首页> 外文OA文献 >Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces
【2h】

Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces

机译:硅烷聚合物包覆的二氧化硅和氧化铝基表面上生物分子的纳米级附着力,摩擦和磨损研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Proteins on biomicroelectromechanical systems (BioMEMS) confer specific molecular functionalities. In planar FET sensors (field-effect transistors, a class of devices whose protein-sensing capabilities we demonstrated in physiological buffers), interfacial proteins are analyte receptors, determining sensor molecular recognition specificity. Receptors are bound to the FET through a polymeric interface, and gross disruption of interfaces that removes a large percentage of receptors or inactivates large fractions of them diminishes sensor sensitivity. Sensitivity is also determined by the distance between the bound analyte and the semiconductor. Consequently, differential properties of surface polymers are design parameters for FET sensors. We compare thickness, surface roughness, adhesion, friction and wear properties of silane polymer layers bound to oxides (SiO2 and Al2O3, as on AlGaN HFETs). We compare those properties of the film–substrate pairs after an additional deposition of biotin and streptavidin. Adhesion between protein and device and interfacial friction properties affect FET reliability because these parameters affect wear resistance of interfaces to abrasive insult in vivo. Adhesion/friction determines the extent of stickage between the interface and tissue and interfacial resistance to mechanical damage. We document systematic, consistent differences in thickness and wear resistance of silane films that can be correlated with film chemistry and deposition procedures, providing guidance for rational interfacial design for planar AlGaN HFET sensors.
机译:生物微机电系统(BioMEMS)上的蛋白质具有特定的分子功能。在平面FET传感器(场效应晶体管,我们在生理缓冲液中证明了其蛋白质传感能力的一类设备)中,界面蛋白质是分析物受体,决定了传感器分子的识别特异性。受体通过聚合物界面与FET结合,彻底破坏界面会去除大部分受体或使大部分受体失活,从而降低了传感器的灵敏度。灵敏度还取决于结合的分析物与半导体之间的距离。因此,表面聚合物的不同性能是FET传感器的设计参数。我们比较了与氧化物(SiO2和Al2O3,如在AlGaN HFET上)结合的硅烷聚合物层的厚度,表面粗糙度,附着力,摩擦和磨损性能。我们比较了额外沉积生物素和链霉亲和素后膜-底物对的性能。蛋白质与设备之间的粘合性以及界面摩擦性能会影响FET的可靠性,因为这些参数会影响界面对体内磨料损伤的耐磨性。粘附/摩擦力决定了界面和组织之间的粘附程度以及对机械损伤的界面抵抗力。我们记录了硅烷膜厚度和耐磨性的系统一致差异,这些差异可以与膜化学和沉积程序相关,为平面AlGaN HFET传感器的合理界面设计提供了指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号